Topography of visual and somatosensory projections to mouse superior colliculus.
نویسندگان
چکیده
In adult mice of the C57BL/6J strain the projection of the visual field was systematically mapped under direct vision. As in other vertebrate species the nasal (anterior) field projected anterolaterally, and the inferior field posterolaterally. Values of magnification-1 (m-1, or degrees of visual field per millimeter tectal surface) were calculated over most of the tectum, for measurements in the coronal and sagittal planes. Whereas m-1 was fairly constant for measurement pairs in sagittal planes, for coronal planes there was a rather large, elongated, horizontally oriented area in the upper field of vision within which m-1 was smaller than elsewhere. In this area m-1 was anisotropic, with a ratio of almost 2:1 between sagittal and coronal planes. In a previously study we had observed that many cells recorded in deeper tectal layers responded to somatosensory stimulation, with whiskers especially conspicuous. In a given penetration perpendicular to the tectal surface, somatosensory receptive fields recorded in the deeper tectum were always concerned with that group of whiskers or with those parts of the body that crossed the regions of visual field represented in the superficial layers directly above. Given this information on the visual coordinates associated with certain somatosensory fields, the detailed mapping of the visual field onto the tectum made it possible to prepare a map of the somatosensory projection on the tectum. The resulting representation differed markedly from maps described for the classic somatosensory pathway. In the tectum the somatosensory map was dictated by the visual-field projection rather than by the peripheral tactile innervation density. Whiskers were thus featured much more prominently in the tectum, and structures close to the eye, such as the pinna and cheek, receive more representation than the tail or hindpaws.
منابع مشابه
Topography of visual and somatosensory projections to the superior colliculus of the golden hamster.
The topography of visual and somatosensory projections to the superior colliculus in the Syrian hamster was studied using electrophysiological techniques. The visual projection to the superficial layers of the colliculus is similar in general topography to that described for other rodents. The magnification of the visual field on the colliculus surface was greatest for nasal visual field. The m...
متن کاملThe Mouse Superior Colliculus: An Emerging Model for Studying Circuit Formation and Function
The superior colliculus (SC) is a midbrain area where visual, auditory and somatosensory information are integrated to initiate motor commands. The SC plays a central role in visual information processing in the mouse; it receives projections from 85% to 90% of the retinal ganglion cells (RGCs). While the mouse SC has been a long-standing model used to study retinotopic map formation, a number ...
متن کاملAlignment of multimodal sensory input in the superior colliculus through a gradient-matching mechanism.
The superior colliculus (SC) is a midbrain structure that integrates visual, somatosensory, and auditory inputs to direct head and eye movements. Each of these modalities is topographically mapped and aligned with the others to ensure precise behavioral responses to multimodal stimuli. While it is clear that neural activity is instructive for topographic alignment of inputs from the visual cort...
متن کاملTopography of interaural temporal disparity coding in projections of medial superior olive to inferior colliculus.
Neurons in the medial superior olive encode interaural temporal disparity, and their receptive fields indicate the location of a sound source in the azimuthal plane. It is often assumed that the projections of these neurons transmit the receptive field information about azimuth from point to point, much like the projections of the retina to the brain transmit the position of a visual stimulus. ...
متن کاملAnomalous ipsilateral retinotectal projections in Syrian hamsters with early lesions: topography and functional capacity.
Retinotectal topography, response properties of neurons in superior colliculus, and visual orienting behavior were studied in hamsters whose superior colliculi were innervated by one or the other of two types of anomalous ipsilateral projections. For the first type, an abnormally large uncrossed projection was created by monocular enucleation on the day of birth. This projection extended over t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 39 1 شماره
صفحات -
تاریخ انتشار 1976